Прямое измерение потока солнечных рр-нейтрино в эксперименте Borexino

Смирнов О.Ю. (ЛЯП)

Общелабораторный семинар 31 января 2024 г.

Цепи солнечных реакций

Доминирует в массивных звездах (в Солнце ~1% светимости)

Поток СОО-нейтрино очень чувствителен к распространенности солнечных элементов.

Список (неполный) экспериментов по поиску рр-нейтрино

Проект	Метод	Порог	Разрешение	Macca [t]	Реакция	$_{\rm pp}$
(ссылка)		[кэВ]	по энергии			соб
						$[д^{-1}]$
LENS	¹⁷⁶ Yb	301 (v)	7%	20%	$^{176}\mathrm{Yb} + \nu_{e} \rightarrow$	0,5
[240]	ЖС		@ 1 MeV	176 Yb((8%)	$^{176}Lu + e^{-}$	
INDIUM	¹¹⁵ In	118(v)	5-10%	4	$^{115}\mathrm{In} + \nu_e ightarrow$	1,0
[241]	ЖС		@1 МэВ		115 Sn [*] (613) + e^{-}	
GENIUS	⁷⁶ Ge	$11(e^{-})$	0,3%	1	$\nu + e^- \rightarrow$	1,8
[242]	ynp.pacc.	59(v)	@ 300 keV	10	$\nu + e^-$	18
HERON	сверхтек. ⁴ He	$50(e^{-})$	8.3%	10	$\nu + e^- \rightarrow$	14
[243; 244]	ротоны/фононы $+ ext{Y} \Phi$	$141(\nu)$	@364 кэВ		$\nu + e^{-}$	
XMASS	LXe	$50(e^{-})$	17,5%	10	$\nu + e^- \rightarrow$	14
[245]	сцинт.	141(v)	© 100 кэВ		$\nu + e^-$	
CLEAN	LNe	$20(e^{-})$		135	$\nu + e^- \rightarrow$	7.2
[246]		82(v)			$\nu + e^-$	
HELLAZ	Не (5 атм),	$100(e^{-})$	6%	2000 м ³	$\nu + e^- \rightarrow$	7
[247]	ВПК	217(v)	@800 кэB		$\nu + e^-$	
MOON	дрейф.	168(v)	12,4% ПШПВ	3,3	$\nu_e + ^{100} Mo \rightarrow$	1.1
[248]	камеры		© 1 МэВ		$^{100}\text{Tc} + e^{-}$	
MUNU	$B\Pi K, CF_4$	$100(e^{-})$	16% ПШПВ	0,74	$\nu + e^- \rightarrow$	0.5
[249]	направл.	217(v)	© 1 МэВ	(200 м ³)	$\nu + e^-$	
NEON	He,Ne	$20(e^{-})$	16% ПШПВ	10	$\nu + e^- \rightarrow$	18
[250]	сцинт.	$82(\nu)$	@ 100 кэB		$\nu + e^-$	
10 т ЖС	ЖС	$170(e^{-})$	10,5 кэВ	10	$\nu + e^- \rightarrow$	1,8
[2; 3]		$310(\mathbf{v})$	© 200 кэВ		$\nu + e^-$	
Borexino	ЖС	$165(e^{-})$	5%	278	$\nu + e^- \rightarrow$	13.6
[7]		$305(\nu)$	@1 МэВ	(75,5 ДО)	$\nu + e^-$	
Serappis	ЖС	$50(e^{-})$	2,2%	20	$\nu + e^- \rightarrow$	12,5
[9]		${\sim}140(\mathbf{v})$	@1 МэВ	(9,3 ДО)	$\nu + e^-$	
Darwin	LXe	$1(e^{-})$	32%	50,0	$\nu + e^- \rightarrow$	40
[251]	BПК $(Д\Phi)$	$17(\nu)$	@1 кэB	(40 ДО)	$\nu + e^-$	

Smirnov, O. Yu. et al., Search for the solar pp-neutrinos with an upgrade of the CTF detector, Nucl. Phys. B Proc. Suppl., v.118 (2002) 448

Smirnov, O. Yu. et al., Search for solar p p neutrinos with an upgrade of CTF detector *Phys.Atom.Nucl.* 66 (2003) 712-723 Smirnov, O. Yu. et al., On the possiblity of detecting solar pp neutrino with a large volume liquid organic scintillator detector *Phys.Atom.Nucl.* 67 (2004) 2066-2072

Potential for a precision measurement of solar pp neutrinos in the Serappis experiment, *Eur.Phys.J.C* 82 (2022) 9, 779

Почему спектральное измерение потока pp-нейтрино в принципе возможно в ЖС?

- Спектр электронов отдачи : 264 кэВ
- Доминирующий фон β-распады ¹⁴С : Е₀=156 кэВ
- Спектры остальных идентифицированных фонов практически постоянны при низких энергиях

Измерение возможно:

1)Низкий порог по энергии
2)Хорошее энергетическое разрешение (~10% at 200 кэВ)
3)Низкий радиоактивный фон
4)Содержание ¹⁴С достаточно мало (хвост+наложение)

Оценки для 10-тонного детектора

Преимущества маленького детектора:

-легче обеспечить светосбор -мал счет наложения сигналов ¹⁴С

Полномасштабный детектор Borexino тогда казался не совсем подходящим инструментом из-за малого световыхода

Borexino и pp-нейтрино

Сразу после запуска Borexino в 2007 году стало ясно, что он обеспечивает световыход фактически в два раза превышающий ожидаемый, при этом чистота сцинтиллятора по ряду показателей также оказалась намного выше предусмотренной техническими требованиями по основной задаче измерения бериллиевых солнечных нейтрино.

Первые оценки чувствительности Borexino к потоку pp-нейтрино на основе реальных данных я представил на совещании коллаборации, приуроченной к запуску детектора, через два дня после начала набора данных. Реальное измерение было опубликовано через 7 лет, подтвердив первые оценки.

Borexino: ¹⁴C, Light yield, Energy Resolution

O.Smirnov

Borexino general meeting May 18, 2007

Conclusions

- 1)¹⁴C content is at the level of 2.5x10⁻¹⁸ g/g;
- 2)L.Y. and energy resolution is better then in CTF, for "Charge" variable it is 490 p.e./MeV;
- 3)The charge scale calibration is good;
- 4)More work is needed to understand the detector's energy resolution;
- 5)With actual resolution we can hope to achieve sensitivity to pp- neutrinos

Fig. 1: Layout of the OSIRIS setup.

Fig. 2: Conceptual layout of the Serappis upgrade. PMTs are moved further from the Acrylic Vessel and equipped with light cones.

Энергетическое разрешение в Borexino + наложение сигналов

Эффективность срабатывания триггера

Все спектральные вклады

показана область энергий, использовавшаяся в первом рр-анализе

Выделение вклада рр-нейтрино

- Скорость счёта событий, вызванных рр-нейтрино, определяется из спектральной подгонки данных
- Необходимо обеспечить:
 - точное описание спектров всех вкладов
 - независимое измерение скоростей счёта ¹⁴С и событий наложения

При низких энергиях моделирование методом МК не обеспечивает необходимую точность изза большой статистики событий ¹⁴С, поэтому используется аналитическая модель

Критические элементы при построении подгоночных спектров:

- аналитическое описание энергетической шкалы
- аналитическое описание энергетического разрешения
- форма отклика детектора (форма сцинтилляционной линии).

Поток ⁷Ве нейтрино изучался при E>E₀(¹⁴C)

"Precision Measurement of the ⁷Be Solar Neutrino Interaction Rate in Borexino" PRL 107, 141302 (2011)

Общий подход к спектральному анализу в Borexino

- Поскольку наблюдаемой величиной является количество света, выделившееся в событии с энерговыделением E, то и спектральная подгонка осуществляется с использованием одной из доступных переменных, связанных с количеством зарегистрированного света. Такой подход позволяет сохранить статистическую форму отклика детектора.
- Энергия на стадии подгонки не восстанавливается, при необходимости пересчёт в энергию производится после подгонки.

$$Q_{reg} = \sum_{i}^{N_{PMT}} q_i \Theta(q_i - q_{th_i}) \Theta(t_i - \Delta T)$$

$$Q_0 = A_0 \cdot E \cdot f(k_B, E) + f_{\check{C}}\check{C}(E)$$

$$f_{Det}(\overrightarrow{r}) \equiv \frac{Q(\overrightarrow{r})}{Q_0}$$

$$N_{pm} = \sum_{i}^{N_{PMT}} \Theta(q_i - q_{th_i}) \Theta(t_i - \Delta T)$$

$$Q_0 = N_{PMT} \cdot \mu_0 = -N_{PMT} \log(1 - \frac{N_{pm}}{N_{PMT}})$$

$$N_{pm}^{t}(\overrightarrow{r}) = \sum_{i}^{N_{PMT}} \Theta(q_{i} - q_{th_{i}})\Theta(t_{i} - tof_{i}(\overrightarrow{r}) + tof_{min} - \Delta T)$$

Выбор эстиматора энергии

Триггерное окно

- Использовались два триггерных окна с фиксированной шириной и, соответственно, две переменные: npmts_dt1 and npmts_d2 (не эквализованные на 2000 ФЭУ в первом анализе)
- 230 нс : dt1

• 400 нс : dt2

Разница в светосборе ≈1 %

Два окна позволяют производить перекрестные проверки, так как счёт наложений сигналов пропорционален ΔT, остальные сигналы остаются теми же

Энергетическая шкала

$$Q(E) = LY \cdot E \cdot f(k_B, E)$$

$$npmts = N_{Live} \cdot \frac{1 - e^{-\frac{Q(E)}{N_{Live}}}}{1 + gc \cdot \frac{Q(E)}{N_{Live}}}$$

$$E \rightarrow Q \rightarrow Npmts$$

(как и в анализе ⁷Ве)

Параметры энергетической шкалы (1 свободный):

- L.Y. свободный (сравнивается с независимым измерением ¹⁴С по событиям второго кластера)
- k_в=0.0109 см/МэВ калибровки
- <NLivePmts> фиксирован (точный расчёт). Среднее число работающих ФЭУ
- gc=0.122 из МК, фиксирован (нет чувствительности при низких энергиях)

Энергетическое разрешение

$$\sigma_{N}^{2} = npmts \cdot (1 - \frac{npmts}{N_{Live}}(1 + v_{1})) +$$

$$npmts^{2} \cdot (v_{T} \cdot npmts \cdot (1 + v_{f}) + v_{f}) +$$

$$\sigma_{int}^{2} \leftarrow$$
(почти) как в анализе ⁷Be
Собственная ширина ЖОС!

Параметры разрешения (2 свободных):

•v_т – свободный. Пространственная неоднородность счёта числа сработавших ФЭУ, чувствителен к нему вклад ²¹⁰Ро, при низких энергиях нет чувствительности. Для ¹⁴С и для ²¹⁰Ро одинаков
 •σ_{int} - свободный. Вклад собственного разрешения ЖОС (избыток относительно sqrt(N_{photons})) для β-частиц (для α не учитывался).
 •v_f - фиксирован - (точный расчёт) – относительная дисперсия распределения работающих ФЭУ

•**v**₁=**0.17** - фиксирован (МК) нет чувствительности к параметру

Измерение собственного разрешения ЖОС EJ301. (из JINST 7 P06011)

Аналитическое описание функции отклика детектора

Форма отклика – форма отклика детектора на моноэнергетический источник Обобщённое гамма-распределение (анализ ⁷Ве) заменено масштабируемым распределением Пуассона Причина: очень большая статистика ¹⁴С в сравнении со статистикой ²¹⁰Ро в анализе ⁷Ве

O.Ju. Smirnov, An Approximation of the ideal scintillation detector line shape with generalized gamma distribution, NIM A 595 (2008) 410

Средние значения и дисперсии обоих распределений совпадают

CTF: пик ²¹⁴Po (эстиматор Q)

Рисунок Г.4 — Сравнение подгонки реальных данных с использованием нормального (слева) и обобщенного гамма-распределения (справа)

CTF : спектр (эстиматор Q)

Где ещё?

Другие факторы, влияющие на форму отклика детектора

Дополнительный разброс из-за различий в эффективности светосбора по детектору: небольшая по сравнению со "статистической" шириной линии "базовая" форма остается неизменной

Изменения скорости счёта Ро и уменьшение NLivePmt со временем приводят к более высокому "эффективному" значению LY для Ро и более низкой "эффективной" дисперсии линии Ро : может быть рассчитано аналитически (Fill(1,1)→Fill(1,e-(t-t0)/T))

Случайная выборка событий (tt64)

скорость счета ¹⁴С: 106,8 Бк во всем объеме сцинтиллятора (N_{pm})

В пересчете на изотопное содержание : (2,64±0,04)·10⁻¹⁸ г/г (¹⁴C/¹²C)

Альтернативный метод построения спектра с наложением сигналов

Конволюция со случайной выборкой ("convolution") Основной сигнал восстановлен в ДО, случайный – по всему объёму. Эффект виден хвосте спектра ¹⁴С.

Определение скорости счета событий ¹⁴С по событиям из второго кластера

Синтетический спектр сигналов наложения

реальные события без каких-либо отборов искусственно накладываются на случайные выборки данных.

"синтетические" события отбираются и реконструируются с использованием процедуры, применяемой к обычным данным.

Спектр включает события, энергия которых изменяется по отношению к исходному событию более чем на заданное число отсчётов (N_{min}).

К каждому реальному событию случайная выборка подмешивается четыре раза, итоговый суммарный спектр делится на 4.

Корреляции рр/рир

Скорость счёта событий наложения

- f(¹⁴C)=(40±1) Бк/100 т (ДО)
- (108±2,7) Бк во всём объёме
- N= [∆T·f(¹⁴C,ДО)·8,64·10⁴] ·f(¹⁴C)=
 [230 нс]: (85,8±4,3) 1/д /100 т
 [400 нс]: (149,3±7,5) 1/д /100 т

(пренебрегли другими вкладами в счёт, как несущественными)

Корреляция ≈1:2

Ожидаемая абсолютная неопределённость на pp-сигнал, связанная с неточностью определения счёта наложений :

±2,2 и ±3,8 (из ≈ 130), <3%

Результаты стандартной подгонки

- Переменная: npmt_dt1/2
- [60-220 Npmts] (≈ 165-590 кэВ)
- Функция отклика: МРП
- Свободные спектральные вклады: ¹⁴C,²¹⁰Bi,²¹⁰Po,pp, ⁸⁵Kr
- Ограниченные спектральные вклады: ⁷Ве, синт.наложение
- Фиксированные спектральные вклады: pep+CNO+⁸B (SSM[HZ]/LMA)
- Параметры энергетической шкалы: LY free, k_B fixed, f_{eq} calculated
- Параметры энергетического разрешение: σ_{int} и v_T free; v_f calculated
- Свободные: LY+2 параметра энергетического разрешения +положение Po position+5 нормировок спектральных вкладов + ограниченные pup и ⁷Be
- <u>9 свободных и 2 (pileup и ⁷Ве)</u> ограниченных

Оценка систематических ошибок

Набор значений получен при изменении условий подгонки, включая диапазон энергий, способ формирования спектра наложения сигналов (синтетического/аналитического).

Распределение достигает максимума около значения 144 соб/д/100 т.

Оценка консервативна, так как не значения не взвешиваются по качеству подгонки

Конечно, стихиями являются земля, вода, огонь и воздух. Но как насчет рубидия? Конечно, вы не можете игнорировать рубидий.. Присутствие ⁸⁷Rb изменит результат

β-распад (3/2⁻ в 9/2⁺ основное состояние ⁸⁷Sr) Е₀=283.3 кэВ

с соответствующим уменьшением счёта ррнейтрино 40 /д/100 т

⁸⁷Rb vs ⁴⁰K

Rb - двадцать третий по распространенности элемент в земной коре, типичное содержание Rb в (2-4)·10³ ниже, чем у более распространённого K (который составляет 1,5% от массы земной коры). Принимая во внимание распространённость радиоактивных изотопов: 0,278 для ⁸⁷Rb против 1,17·10⁻⁴ для 40K, и соотношение времён жизни (47,2 против 1,28 миллиардов лет), мы получаем соотношение для типичной активности ⁸⁷Rb:

$$\frac{Activity(Rb)}{Activity(K)} = \frac{abund(^{87}Rb)}{abund(^{40}K)} \cdot \frac{T_{1/2}^{^{40}K}}{T_{1/2}^{^{87}Rb}} \cdot \frac{At(Rb)}{At(K)} = 64.5 \cdot \frac{At(Rb)}{At(K)}$$

Химия элементов та же, Rb Образует все виды солей — большей частью легкорастворимые, можно ожидать тот же коэффициент очистки, если исходить из естественного соотношения Rb/K.

• ⁴⁰К (рер-анализ) <0.11 соб/д/100 т (68% У.Д.)*

<4.6·10⁻¹⁶ Knat [г/г ЖС]

*опубликованное значение <0.4 соб/д/100 т для 95% У.Д. (<1.7·10⁻¹⁵ Knat [г/г ЖС])

Первое измерение потока pp-нейтрино в режиме реального времени с точностью ~11%

pp = 144 ± 13 (стат) ± 10 (сист) соб/д/100 т

Ожидаемое значение (MSW/LMA+SSM/HZ) 131±2 соб/д/100 т

Измеренный поток рр-нейтрино:

(6.6±0.7)·10¹⁰ см⁻²с⁻¹

vs (модели)

(5.98±0.04)·10¹⁰ см⁻²с⁻¹

Нулевой сигнал рр исключён на уровне 10

До/после 2014

Радиохимическое измерение

 $[pp + {}^{7}Be + CNO + pep + {}^{8}B|Ga] = 66,1 \cdot (1 \pm 0,047)$ SNU.

До измерения потока бериллиевых нейтрино: Gallex/GNO+SAGE + Clorine + SNO

+Borexino (⁷Be) [2009]

Borexino, прямое измерение [2014]:

С учётом новых измерений Borexino (CNO, 2023)

Прямое измерение Borexino [2019]

 $\varphi_{pp}(Ga)$: 22%

 $\phi^{\odot}_{pp}(\mathrm{Ga}) = 6.0 \cdot (1 \pm 0.14) \times 10^{10} \ \mathrm{cm}^{-2} \mathrm{c}^{-1}$

φ_{pp}(Borexino)=6.6·(1±0.11)·10¹⁰ см⁻²с⁻¹

$$\varphi_{\rm pp}^{\odot}({\rm Ga}) = 6.05 \cdot (1^{+0.092}_{-0.083}) \times 10^{10} \ {\rm cm}^{-2} {\rm c}^{-1}.$$

$$\varphi_{pp}^{\odot}(\text{Borexino}) = 6,1(1,0^{+0,096}_{-0,12}) \times 10^{10} \text{ cm}^{-2} \text{c}^{-1}$$

Одновременная подгонка pp+Be+pep

Многопараметрическая подгонка

 $\phi_{7Be}^{\odot}(Borexino) = (4,99 \pm 0,11^{+0,06}_{-0,08}) \times 10^9 \text{ cm}^{-2} \text{c}^{-1}$

Вероятность выживания электронных нейтрино Рее

Собственное разрешение ЖОС

Брайтенбергер [1955], Райт [1954]

$$v(Q) \equiv \left(\frac{\sigma_Q}{Q}\right)^2 = \frac{1+v_1}{Q} + v(p) + (1+v(p))\left[v(N_{ph}) - \frac{1}{\overline{N_{ph}}}\right]$$

Авторы сознательно пренебрегли возможной неоднородностью светосбора δ_p² при представлении своих данных (этот факт подчёркивается в статье), то есть вариация сигнала в измерениях представляет собой сумму постоянной по энергии вариации светосбора и зависящего от энергии вклада собственного разрешения:

Подгонка данных

Energy, MeV

Еще один набор

Измерения энергетического разрешения на комптоновском спектрометре в диапазоне энергий 36-63~эВ из диссертации А.Формозова

Borexino

(

$$\sigma_{int}^2 = N_{PMT}^2 \overline{p_0}^2 (e^{\mu_0 \mu_1 v_1^{int}} - 1)$$

Приближение для малых μ

$$\sigma_{int}^2 = 10^{-2} v(N) \cdot N_{\star}$$

Все доступные данные

Источник	ЖОС	оригинальное	v_1^{int}	R_{int} (1 МэВ)
		значение	$\times 10^{-4}$	%
Формозов [184]	LAB+1,5 г/л PPO	35 < E < 65кэВ	$1,9\pm0,4$	$1,4\pm0,15$
Денг [181]	LAB+2,5 г/л PPO	$1,\!83\pm 0,\!06\%$	$3,3\pm0,2$	$1,\!82\pm0,\!06$
	+ 3 мг/л бис-MSB	@ 0,976 MəB		
Свидерский [182]	EJ301 $(C_6H_4(CH_3)_2)$	10 < E < 667кэ В	$2{,}02\pm0{,}08$	$1,\!42\pm0,\!03$
Borexino [12]	PS + 1,5 г/л PPO	$v(N) = 11,5 \pm 1$	$2,2\pm0,2$	$1,5\pm0,1$
Borexino [186]	PS + 1,5 г/л PPO	$\sigma_{int} = 1,\!69 \pm 0,\!23$	$1,7\pm0,5$	$1,3\pm0,3$

O. Smirnov "Note on intrinsic resolution in liquid organic scintillators", JINST 18 (2023) 10, P10026

Калибровка АЦП

Дисперсия сигнала Q_{еq}

Брайтенбергер [1955], Райт [1954]

$$v(Q) \equiv \left(\frac{\sigma_Q}{Q}\right)^2 = \frac{1+v_1}{Q} + v(p) + (1+v(p))\left[v(N_{ph}) - \frac{1}{\overline{N_{ph}}}\right]$$

$$\sigma_{Q_{eq}}^{2} = (1+v(c)) \left[f_{eq} \cdot c \cdot (1+v_{1}^{Det})Q_{eq} + f_{eq}Q_{1}v_{1}^{int}c(1+v(p))(1+v(f_{Det}))Q_{eq} + v(f_{Det})Q_{eq}^{2} + f_{eq}\frac{v(p)}{N_{PMT}}(1+v(f_{Det}))Q_{eq}^{2} \right] + N_{D}\overline{q_{D}}(1+\overline{v}_{D})f_{eq}.$$

Сферическая симметрия детектора не нужна.

Дисперсия относительной чувствительности ФЭУ отсутствует, так как она включена в определение v(f_{Det})

Получены более точные выражения для N_{eq}

$$\overline{N_{pm}} \simeq N_{PMT} \left(1 - e^{-\overline{\mu}(1 - \frac{\overline{\mu}}{2}v(\mu))} \left(1 + p_t \overline{\mu}\right)\right)$$
$$v(\mu) \equiv v(s) + \overline{v(p)} + (1 + \overline{v(p)}) \frac{\mu_1 f_G}{\overline{\mu}} v_1^{int} + v(f_{pm}) - \frac{\overline{\mu}}{3} a(f_{pm})$$

$$\begin{split} Q(E) &= LY \cdot E \cdot f(k_B, E) \\ npmts &= N_{Live} \cdot \frac{1 - e^{-\frac{Q(E)}{N_{Live}}}}{1 + gc \cdot \frac{Q(E)}{N_{Live}}} \end{split}$$

Сферически симметричный детектор

$$\sigma_N^2 = npmts \cdot (1 - \frac{npmts}{N_{Live}}(1 + v_1)) + npmts^2 \cdot (v_T \cdot npmts \cdot (1 + v_f) + v_f) - \sigma_{int}^2$$

$$\overline{v_{N_{eq}}^{2}} = f_{eq} \cdot N_{PMT} \overline{p_{0}} \left[1 - \overline{p_{0}} e^{\mu^{2} v(\mu)} + N_{PMT} \overline{p_{0}} \left[e^{\mu \mu_{1} v_{1}^{int} + \mu^{2} v(f_{Det})} - 1 \right] \frac{1}{f_{eq}} \right] + v_{T}^{0} \cdot N_{eq}^{0} \cdot \langle \frac{1}{f_{eq}} \rangle,$$

$$v(\mu) = \frac{\mu_{1}}{\overline{\mu}} v_{1}^{int} + \frac{\overline{v(p)}}{N_{PMT}} + v(s) + v(f_{Det}) + v(f) - \overline{\mu}a(f).$$

Быстрое моделирование сферического детектора

Готовый рецепт для МК

$$Q = \sum_{i}^{N_{PMT}} \mu_i = \sum_{i}^{N_{PMT}} \mu_0 s_i f_{pm}(r, \cos \theta_i) \, \phi. \vartheta.,$$

$$f_{Det}(\overrightarrow{r}) \equiv \frac{Q(\overrightarrow{r})}{Q_0}$$

$$f_{Det}(\overrightarrow{r}) = \frac{1}{N_{PMT}} \sum_{i} s_i f_{pm}(r, \cos \theta_i)$$

Карта светосбора : $f_{pm}(r,\theta)$

$$f_{pm}(r,\cos\theta) = f_0 \frac{L(r,\cos\theta)^2}{L_0^2} \cos^n \theta'(r,\theta) e^{-\frac{L(r,\cos\theta) - L_0}{L_{abs}}}$$

	f_0	n	L_{abs}, M	χ^2
Данные, ФЭУ(К)	$0,113{\pm}0,001$	$1,544{\pm}0,004$	$18,46{\pm}0,06$	23507/23997
МК, ФЭУ(К)	$1,004{\pm}0,001$	$1,314{\pm}0,007$	$17,27{\pm}0,07$	22945/23998
Данные, ФЭУ(бК)	$0,0734 \pm 0,0001$	$1,24{\pm}0,01$	18,46 (фикс)	24116/23998
МК, ФЭУ(бК)	$0,978 \pm 0,002$	$0,94{\pm}0,02$	17,27 (фикс)	22675/23998

Сравнение полного и быстрого МК с данными

Vol

Компенсация пространственных эффектов

$$Q^{Rec} = f_{eq} \frac{Q(x,y,z)}{f_{Det}(\overrightarrow{r})}, \qquad f_{Det}(\overrightarrow{r}) = \frac{1}{N_{equiv}} \sum_{i} s_{i} f_{pm}(r,\theta_{i}(\overrightarrow{r}))$$
$$N_{corr} = f_{nc}(\mu_{0},\overrightarrow{r}) \cdot N^{eq}(\overrightarrow{r}) \qquad f_{nc}(\mu_{0},\overline{r}) \equiv \frac{\langle p_{1} \rangle}{\langle p_{1}(\overrightarrow{r}) \rangle} = \frac{\sum (1 - e^{-s_{i}\cdot\mu_{0}})}{\sum (1 - e^{-s_{i}\cdot\mu_{0}}f_{pm}(r,\theta_{i}(\overrightarrow{r})))},$$
$$f_{nc}^{pt}(\mu_{0},\overrightarrow{r}) \equiv \frac{\langle p_{1}^{th} \rangle}{\langle p_{1}^{th}(\overrightarrow{r}) \rangle} \simeq \frac{N^{Rec}}{\sum (1 - e^{-s_{i}\cdot\mu_{0}} \cdot (1 + p_{t} \cdot s_{i} \cdot \mu_{0}))}{\sum (1 - e^{-s_{i}\cdot\mu_{0}}f_{pm}(r,\theta_{i}(\overrightarrow{r})))},$$

Пример

Многопараметрическая подгонка с использованием квазинезависимых эстиматоров

Параметры общие для Q и N

Специфичные параметры для Q или N

Параметр	Типичное значение	Статус	Оценка
A_0	575	0	
f_G	$\simeq 1,00$	0	MK
f_{eq}		1	расчёт
p_t	$0,\!12 \div 0,\!17$	1	измерения
v(s)	4.5×10^{-2}	1	оценка
v(p)	2×10^{-2}	0	
$v_1(N)$	$(1,7 \div 3,3) \cdot 10^{-4}$	0	измерения
$v(f_{Det})$	$\simeq (4 \div 30) \cdot 10^{-4}$	0/1	MK
$E(^{210}Po)$	≃400 кэВ	0/1	
$v(^{210}{\rm Po})$	$\simeq (4 \div 30) \cdot 10^{-4}$	0/1	
f_{511}	0,88	0	
$v(f_{511})$	$\simeq (2 \div 3) \cdot 10^{-4}$	1	
k_B	0,0109 см/МэВ	1	измерение
$f_{\check{C}}$	$\sim 1 \div 2$	0	

Параметр	Переменная	Типичное значение	Статус	Комментарий
С	Q	0,86	0	оценка
v(c)	Q	0,02	1	оценка
q_t	Q	$0{,}01 \div 0{,}02$	1	расчёт
v_1^{Det}	Q	$0,\!34$	1	оценка
$v(f_{pm})$	Ν	$0,\!23$	0/1	MK
$a(f_{pm})$	Ν	$0,\!23$	0/1	MK
v^T	Ν		0/1	MK
$\overline{f_{nc}}$	N^{Rec}	$\simeq 1,00$	0/1	

Спектры для квазинезависмых величин Q и N ведут себя как набор независимых данных

Многопараметричекая подгонка позволяет избавиться от корреляций между параметрами

Пример многопараметрической подгонки с использованием квазинезависимых эстиматоров

Заключение

1. Показана принципиальная достижимость чувствительности к солнечным рр-нейтрино для ЖС детектора;

2.В режиме реального времени измерен поток солнечных pp-нейтрино, составивший (6,1±0,5^{+0,3}-0,5)x10¹⁰ см⁻²с⁻¹;

3.В режиме реального времени измерен поток солнечных бериллиевых нейтрино, составивший (4,99±0,11^{+0,06}_{-0,08})х10⁹ см⁻²с⁻¹ (для суммы по обеим линиям ⁷Ве;

4.Из совместного анализа галлий-германиевых экспериментов и допустимых отклонений в спектрах солнечных бериллиевых и ppнейтрино получен предел на эффективный магнитный момент нейтрино;

5. Разработаны модели, описывающие одноэлектронный зарядовый и временной спектры ФЭУ;

6.Предложена феноменологическая однопараметрическая модель, описывающая собственное разрешение ЖОС;

7.Измерена одна из самых низких в истории исследований концентраций ¹⁴С с точностью ≈5;

8. Предложена аналитическая модель для параметризации эффекта ионизационного гашения и модель для параметризации вклада черенковского излучения;

9.Разработана детальная аналитическая модель для описания энергетического разрешения ЖС детектора с большим количеством ФЭУ включающая все возможные вклады в ширину отклика;

10.Идентифицирован вклад неточности калибровки АЦП в фотоэлектронах в энергетическое разрешение ЖС детектора;

11. Разработана аналитическая модель для описания формы отклика ЖС детектора на основе обобщённого гамма-распределения для зарядовых эстиматоров энергии;

12. Разработана аналитическая модель для описания формы отклика ЖС детектора на основе непрерывного масштабированного распределения Пуассона для эстиматоров энергии на основе количества сработавших ФЭУ в событии;

13.Предложена аналитическая модель для восстановления энергии по количеству сработавших ФЭУ;

Разработана методика быстрого моделирования сферического ЖС детектора на основе карт светосбора для одного ФЭУ;

14.Сконструированы оптимальные эстиматоры энергии для неоднородного по светосбору сферического детектора в условиях с меняющимся во времени количеством работающих ФЭУ;

15. Предложена методика одновременного использования квазинезависимых эстиматоров энергии для спектральной подгонки;